Glaciers in the Aru Basin, Tibetan Autonomous Region, Oct. 25, 2016. Courtesy of Tian Lide


After the largest glacier collapse in recorded history, a team of international researchers used data to avert further calamity...

Two recent glacier collapses in the Tibet Autonomous Region — one of them deadly — have left researchers’ hopes for glacier longevity shattered.

Despite global warming melting down some of the world’s largest glaciers, hundreds of others in the northwestern part of the Tibetan Plateau had long been considered rare exceptions. Based on scientific observation over the past few decades, these glaciers appeared to be rather stable.

In a research paper soon to be published in the Journal of Glaciology, a team of Chinese and European glaciologists fear the two recent Tibetan glacier collapses may be only the beginning. As temperatures and precipitation levels rise, the local herders, accustomed to living out in the open, are finding themselves at greater risk of natural disasters.

On the morning of July 17, a sudden gust of wind blew away several of the herders’ tents near a lake in the Aru Basin. An avalanche followed as the glacier collapsed. Ice and debris came crashing down a narrow gully and into the lake, traveling a distance of 6 kilometers. According to state news agency Xinhua, the avalanche killed nine herders and hundreds of yaks and sheep.

Images before and after the Aru Glacier collapse on July 17, 2016. From the Journal of Glaciology

Images before and after the Aru Glacier collapse on July 17, 2016. From the Journal of Glaciology

In the aftermath of the tragedy, Tian Lide, a glaciologist at the Beijing-based Institute of Tibetan Plateau Research of the Chinese Academy of Sciences (CAS) and a co-author of the research paper, conducted a field investigation with his colleagues. According to their findings, the debris covered nearly 10 square kilometers, or an area the size of 1,400 soccer fields.

At the time it was the largest avalanche in recorded history, but that record didn’t last long. On Sept. 21, another glacier collapsed in the same area, further diminishing the glacial base.

“The site of collapse is baffling,” Tian told Nature in August. “The Rutog avalanche initiated at quite a flat spot. It doesn’t make sense.” Ruling out an earthquake as a potential cause, Tian said he suspected climate change was to blame.

According to records in the town of Shiquanhe, where the nearest meteorological station to the two collapses can be found, the average temperature in the area has risen by 1.5 degrees Celsius in the past 50 years. The average temperature in Tibet, meanwhile, has climbed by 0.4 degrees since 1960. Data from another nearby weather station shows that precipitation in the first seven months of 2016 had been 88 percent higher than the average of the preceding five years.

Some researchers, however, have argued that the collapses were due to periodic glacial movement rather than climate change or some unknown force. Guo Wanqin, a researcher at the Center for Excellence in Tibetan Plateau Earth Sciences at the CAS, told Sixth Tone that this kind of movement — often referred to as a “glacier surge” — is normal in many parts of the world, from Alaska to Tibet.

“The surges could have been caused by meltwater around the base of the glaciers,” Guo said. According to his institute, global warming could trigger more glacier surges by contributing to meltwater. In Tibet, around 1 percent of the region’s nearly 50,000 glaciers are currently surging. But Tian argues that these surges usually occur over the span of months instead of minutes.

The first collapse spurred the team of Chinese and European researchers to work together to determine the cause. After a thorough analysis of satellite data, they correctly predicted the second avalanche.

Silvan Leinss, a researcher at the Institute for Environmental Engineering at Eidgenossische Technische Hochschule (ETH) Zurich in Switzerland and one of the members of the international team, told Sixth Tone that he and other researchers discovered that the first collapse could be traced back to snow melting in September 2015. The upper part of the glacier moved downstream at a rapid rate, and researchers interpreted this as an early warning sign before the disaster. The second glacier had a similar movement before its eventual collapse.

The team’s findings were passed on to the Tibetan government, who gave orders to evacuate the herders and close roads in the area in order to minimize casualties.

But the researchers worry that their experiences may be hard to duplicate to foresee similar disasters. Monitoring the glaciers on a macro scale requires constant analysis since the data don’t reveal much when taken individually. Frequent fog and other inclement weather also makes analysis very difficult, and sometimes even impossible, according to Leinss and Tian.

Dec 05, 2016
original story HERE
Get more of The Global Warming Blog. Bookmark this page and sign up for the blog’s free RSS Feed. Sign up for free Global Warming Blog by clicking here. You will automatically be emailed a regular summary of the latest global warming headlines. 
To learn about more about global warming, climate change or greenhouse gases as well as the causes, consequences, solutions, definitions, facts and tipping points related to these subjects, click here
To see our most current positions, opinions, comments, agreement or disagreement with this article, and/or possible criticisms related to the subjects or facts raised in the above article, click here.  Then look for those subjects in the navigation links at the top the page.
To sign a critical petition for declaring an international global warming State of Emergency, click  here!

To help do something about the climate change and global warming emergency, click here.

Sign up for our free Global Warming Blog by clicking here. (In your email, you will receive critical news, research, and the warning signs for the next global warming disaster.)

To share this blog post: Go to the Share button to the left below.

Be the first to comment

Please check your e-mail for a link to activate your account.
Get More Info Here Take Action Support Our Mission

Subscribe to Our Global Warming Blog


Subscribe to Our Global Warming Blog