Last Updated 2.17.25.
This article was prepared by a 100% publicly funded climate change think tank known for its uncensored facts and analysis.
Prologue
This article is about the definition of climate change and how global heating (aka global warming) works. At the end of this article, you will find a link to a comprehensive four-part plan for what you can do to help manage climate change and global warming.
To counterbalance these disruptive facts, in this article, you will also find a link to the many surprising benefits that you will experience as we work toward resolving this great challenge, opportunity, and evolutionary adventure.
The not-for-profit Job One for Humanity organization primarily educates individuals and businesses on surviving and thriving through the soon-coming climate change and global warming consequences.
To formulate your own informed global warming opinions for what our future climate will look like, it is essential to know:
- what climate change is,
- how global warming is created,
- how the life-critical stability of the global environment is affected by global warming, and
- how will this affect you and your future, and how soon will that happen?
Suppose you are a diligent person who is serious about planning your future and avoiding unnecessary suffering and financial loss. In that case, this may be the most crucial website you may ever read.
What are climate change and global warming?
In the illustration below, you will see a few of the many consequences of climate change and global warming.
Climate change (also known as Global warming) refers to the century-scale rise in the average temperature of the Earth's climate system and its related effects. Scientists are more than 95% certain that nearly all global warming is caused by increasing concentrations of greenhouse gases (GHGs) and other human-caused emissions.
Get Our New Free Climate Change Danger Alerts and Brief Climate Updates Here!
Accumulating greenhouse gases, such as water vapor, carbon dioxide, methane, nitrous oxide, and ozone, absorb and emit heat radiation. Increasing or decreasing the amount of greenhouse gases in the atmosphere either holds more of the sun's heat or releases more.
Our atmosphere is getting hotter, more turbulent, and more unpredictable because of the “boiling and churning” effect caused by the heat-trapping greenhouse gases within the upper layers of our atmosphere. With each increase of carbon, methane, or other greenhouse gas levels in the atmosphere, our local weather and global climate are further agitated, heated, and “boiled.”
The increase in the average global temperature gauges global warming. Along with our increasing average global temperature, some parts of the Earth may get colder while others get warmer—hence the idea of average global temperature. Greenhouse gas-caused atmospheric heating and agitation also increase the unpredictability of the weather and climate and dramatically increase the severity, scale, and frequency of storms, droughts, wildfires, and extreme temperatures.
Global warming can reach levels of irreversibility as it has now, and increasing levels of global warming can eventually reach an extinction level where humanity and all life on Earth will end. (Click here to discover why total human extinction is not realistic or probable, and the worst humanity will experience is near-total extinction [50 to 90+% of humanity going extinct]).
Runaway global heating is partially defined as a continuum of increasing temperatures that cause the global climate to change rapidly until those higher temperatures become irreversible on practical human time scales. The eventual temperature range associated with triggering and marking the beginning of the runaway global warming processes is an increase in average global temperature of 2.2°-4° Celsius (4°-7.2° Fahrenheit) above preindustrial levels. For the full definition of runaway global warming and how this has happened to us, click here.
Extinction-level global warming is defined as temperature levels by 5-6° Celsius (9-10.8° Fahrenheit), exceeding prein the extinction of all planetary life, or the eventual loss of our atmosphere. If our atmosphere is also lost, this is called runaway global warming. The result would be similar to what is thought to have happened to Venus 4 billion years ago, resulting in a carbon-rich atmosphere and minimum surface temperatures of 462 °C.
The temperature levels described above for irreversible and extinction-level global warming are not hard and rigid boundaries but boundary ranges that define the related consequences and their intensities within a certain level of global warming. These temperature boundary levels may be modified by future research. More about how irreversible worldwide warming and extinction-level global warming can come about because of complex interactions will be explained in the tipping point information will set the foundation necessary to understand how we are already creating the conditions that have made not only irreversible global warming but also extinction-level global warming if we keep going as we are now.
Basic climate change facts:
- The concentration of human-caused carbon pollution in our atmosphere has nearly doubled in 60 years and continues escalating rapidly.
- Carbon in the atmosphere from burning fossil fuels isn’t our only problem, as you will soon find out.
- While the situation is critical, it is still possible to slow and lessen global warming enough for the climate to establish a new, stable equilibrium. However, that equilibrium may be unlike anything previously seen in Earth’s history and may not be suitable for humanity to thrive.
How is increasing carbon dioxide in our atmosphere tracked and measured
Atmospheric carbon from fossil fuel burning is the main human-caused factor in the escalating global warming we are experiencing now. The current level of carbon in our atmosphere is tracked using what is called the Keeling curve. The Keeling curve measures atmospheric carbon in parts per million (ppm).
Many measurements are taken each year at Mauna Loa, Hawaii, to determine the parts per million (ppm) of carbon in the atmosphere. At the beginning of the Industrial Revolution (1) around 1880, our atmospheric carbon ppm level was at about 270 before we began burning fossil fuel. Here is the current Keeling curve graph for where we are today:
Keeling Curve Monthly CO2 graph, via Show.Earth (2)
As you can see, we are not doing very well. As of July of 2024 we are at about carbon 426 ppm. In this website section (on the Learn pull-down), you will learn what this exponentially rising carbon means to your future. You will also see other graphs showing how today’s atmospheric carbon levels compare to our near and far-distant past (hundreds, thousands, hundreds of thousands, and millions of years ago).
No matter what you hear in the media, if the total carbon ppm level is not going down or carbon’s average ppm level per year is not falling or at least slowing its steep increase, (3) we are not making any significant progress on resolving the escalating climate change emergency. Total atmospheric carbon and carbon’s average ppm level per year are the most dependable measurements of our progress and predict what will happen with global warming and its many consequences.
How do we know if we're making honest progress in reducing carbon dioxide to reduce global warming?
There are at least two ways we will be able to tell that we are making honest progress in reducing global warming:
- When we see our average annual increase in carbon ppm levels (currently at about three ppm per year) begin dropping, remaining at the current level, or at least rising at a slower rate.
- When we see the above Keeling graph levels drop from the current carbon ppm level (approximately 426 ppm) to carbon 350-325 ppm. (How we do this is in the free Job One Plan.)
A quick look at the historic rise of carbon in the atmosphere since the Industrial Revolution
The following graph demonstrates that carbon in the atmosphere rose long before 1960. With the introduction of fossil fuels, carbon began growing around 1880, at the beginning of the Industrial Revolution.
In the graph below, you will notice that the increase in the curve of carbon in the atmosphere proceeds from about 1880 to 1950 in a gradual linear progression. From 1950 to 2000 and beyond, carbon increases in the atmosphere is a far steeper, more exponential curve.
Image via Stephen Stoft at zfacts.com (4) (5)
How escalating global warming destabilizes the climate and creates economic, political, and social chaos
We must understand that the stability of our climate is the foundation for running our personal and business lives smoothly and successfully. If the global climate continues destabilizing due to escalating global warming, most people will not realize that their everyday lives will destabilize until it is too late.
Most people do not think about:
- What will happen when food production drops due to drought, floods, and extreme heat? This will cause food prices to soar and many foods to become scarce.
- Storms will continue to grow more violent, costly, and cataclysmic. Damage to homes, businesses, and infrastructure will increase and occur in larger areas.
- How will our everyday lives gradually grind to a near-halt?
It is not an overstatement to say most people do not understand how much of their daily lives' stability, predictability, and success (and futures) entirely depends upon a stable temperature range and climate. By and large, they take the ubiquitous general stability of the climate for granted, almost as though it could never change.
Please see the graph of all significant greenhouse gases below and imagine our future. It is simple proof that we are not making any progress in reducing climate change (which the global fossil fuel cartel never wants you to see).
Measuring all atmospheric greenhouse gas levels together is the most accurate measure of real climate change reduction progress. The graph below shows the story of the three primary fossil fuel-burning atmospheric greenhouse gases: carbon (CO2), methane (CH4), and Nitrous Oxide (N2O). The numbers at the bottom of the illustration are the AD dates in history. The IPCC is the United Nations Intergovernmental Panel on Climate Change. AR6 is the IPCC's climate summary report. NOAA is the US National Oceanic and Atmospheric Administration. PPB is parts per billion. PPM is parts per million.
The gray vertical rectangle on the right shows how fast greenhouse gases have risen. Around 1800 AD, they increased far beyond any earlier levels, marking the beginning of the fossil fuel-burning industrial revolution.
As you can see from above, our governments have failed to make any real progress in reducing global fossil fuel use (as shown in the lack of reduction of the three most significant and most dangerous greenhouse gases). If our governments had made real progress, the lines on the greenhouse gases graph above would go down and not up at even faster and steeper rates, and methane is 80 to 86 times more powerful and raising heat in the atmosphere in carbon.
Get Our New Free Climate Change Danger Alerts and Brief Climate Updates Here!
The global climate’s heat-controlling systems and subsystems
Within the climate’s many systems and subsystems, there are factors that directly and indirectly affect the overall stability of the global climate and our temperature. One of these factors is that some climate systems and subsystems have carbon-eating or carbon-releasing qualities.
When we say something has a carbon-eating quality, we mean that it takes carbon out of the atmosphere and helps to reduce global warming. When we say something has a carbon-releasing quality, we mean that it puts carbon back into the atmosphere, which causes an increase in global warming. The climate’s carbon-eating or releasing subsystems, which can raise or lower the Earth's average temperature and the climate’s stability, are:
Oceans hold absorbed carbon or heat with their currents, different water temperatures, and descending and ascending layers. Initially, the oceans absorb carbon and help us. But when too much carbon is absorbed, the oceans emit carbon back into the atmosphere, raising temperatures.
Forests can eat or release carbon based on temperature and other conditions. When trees die, carbon is released back into the atmosphere. Trees typically remove carbon dioxide from the atmosphere. However, trees release carbon dioxide if certain conditions exist or it gets too warm.
Soils can also eat or release carbon depending upon their condition under heat variables. This is due to carbon deposits from plant life.
The carbon-eating and oxygen-producing plankton in the oceans. If the oceans absorb too much carbon from global warming, they become acidic—specifically, carbonic acid. This acidity eventually kills some or all of the carbon-eating and oxygen-producing plankton. If we kill off this necessary plankton, we will find ourselves with insufficient oxygen in a world no one can endure.
Carbon and methane-releasing volcanoes. Sustained large-scale volcanic activity can drastically affect the environment. If the volcano is large enough, such as a supervolcano, the eruption could cool the planet and create two or three years of nuclear winter. Such a development creates extinction-level destruction in the form of severe negative impacts on agriculture and other living systems.
The climate also has systems that produce, reflect, or absorb heat. These systems can also raise or lower global temperature. Some of the climate’s heat-producing, reflecting, or absorbing systems and subsystems are:
The total amount of heat-increasing water vapor in the atmosphere. Atmospheric water vapor is the most critical human-caused greenhouse gas, increasing atmospheric temperature. The higher the temperature, the more water vapor escapes into the atmosphere from evaporation, turning this cycle into a vicious, self-reinforcing positive feedback loop.
The total amount of heat-increasing carbon and methane polluting the atmosphere from our fossil fuel burning, fracking, big agribusiness, and other uses.
The total area of heat-reflecting white snow and ice cover on the planet at any time (known as the albedo effect). This includes the glaciers and massive Arctic and Antarctic ice packs that are heat-reflecting.
The amount of heat-increasing methane is released by tundra and permafrost when these methane pockets thaw.
The amount of heat-increasing methane released from methane clathrate crystals from ocean-bottom sediments as ocean temperatures rise. We're looking at extinction if this happens as quickly as scientists theorize it did millions of years ago. (Please click here to watch a short video that brilliantly explains the extinction process once we start releasing methane clathrate from our coastal shelves. New research shows we begin this release process once we reach 5°C, and by 6°C, it is in full bloom.)
The temporary heat-reducing effects from volcanic soot enter the atmosphere and reflect some of the sun’s heat.
Slight changes in the earth’s axis position can also raise or lower the average global temperature range depending upon the angle of axis shift. (6) These temperature-affecting changes in the earth’s axis are called Milankovitch cycles. These 21,000 to 26,000 orbital cycles have an immense effect on global temperatures. Currently, we should be in a decreasing (cooling) phase of the cycle, but there are too many excess greenhouse gases in the atmosphere for the planet.
What is climate destabilization?
Now that you have a quick overview of some of the systems within the climate and how they work to increase or decrease the global temperature, it's time to look at the climate reacting as an interconnected, interdependent, unified, and whole system.
The global climate system or its key subsystem processes can quickly move from one reasonably stable state of dynamic balance and equilibrium into a new transitional state of instability and greater unpredictability. Eventually, the global climate will settle at a new, but different, stable state of dynamic equilibrium and balance, but it will be at a new level and range (a dynamic equilibrium is not static or unchanging; it varies within a range of some climate quality, e.g., average temperature, average humidity). The preceding suggests that a useful and accurate definition for climate destabilization would be:
“A transitional state of escalating global climate instability. This state is characterized by greater unpredictability, which lasts until the global climate eventually finds a new and different stable state of dynamic equilibrium and balance at some different level of temperature and other climate qualities from what it has held for hundreds or thousands of years." —Alexei Turchin, The Structure of the Global Catastrophe.
The three degrees of climate destabilization
Climate destabilization can be said to come in at three degrees. The three degrees defined below help individuals and organizations better understand the relative boundary ranges and threat levels that are occurring or will occur based on measured increases in global warming. The temperature, carbon ppm, and loss or cost levels described below for each degree of climate destabilization are not stiff and rigid boundaries but boundary ranges designed to help you think about a set of related consequence intensities closely associated with that degree of climate destabilization. The temperature, carbon, cost, and loss boundary levels below may be modified by future research.
The three degrees and definitions for climate destabilization are:
Catastrophic climate destabilization is associated with a measurement of carbon 400-450 ppm. We are already in the beginning stages of catastrophic climate destabilization at the estimated 1.6 degrees Celsius (2.2° - 3.1 degrees Fahrenheit) of temperature increase. The eventual temperature range associated with catastrophic climate destabilization will be an increase in the average global temperature of about 2.7° Celsius (4.9° Fahrenheit). When global warming-caused storms, floods, seasonal disruption, wildfires, and droughts begin to cost a nation 30 to 100 billion dollars per incident to repair, we will have reached catastrophic climate destabilization. We are already in this phase of climate destabilization. Hurricane Sandy in New York cost the United States between 50 and 60 billion dollars to repair.
Irreversible climate destabilization is associated with a measurement beginning around 425 -450 ppm of carbon dioxide. The eventual temperature range associated with triggering irreversible climate destabilization is an increase in the average global temperature from 2.2°-2.7° Celsius (4°-4.9° Fahrenheit) to 4° Celsius (7.2° Fahrenheit).
Irreversible climate destabilization and mass human extinction will occur when we have reached 500-600 ppm of carbon. At this point, we have moved away from the relatively stable dynamic equilibrium of temperature and other key weather conditions we have experienced during the hundreds of thousands of years of our previous cyclical Ice Ages. Once a new dynamic equilibrium finally stabilizes for the climate in the above carbon ppm ranges, we will have crossed from catastrophic climate destabilization into irreversible climate destabilization and mass human extinction.
Irreversible climate destabilization involves a new average global temperature range and a set of destabilizing climate consequences we will most likely never recover from—or that could take hundreds or even thousands of years to correct or rebalance. This will eventually cost the nations of the world hundreds of trillions of dollars.
Total Extinction-level climate destabilization. The total extinction-level climate destabilization, as defined here, begins by measuring carbon parts per million in the atmosphere in the 600 ppm or more range. The eventual temperature range associated with extinction-level climate destabilization is an increase in average global temperature of 5° to 6° Celsius (9° to 10.8° Fahrenheit).
Extinction-level climate destabilization is also defined as the eventual extinction of up to half or more of the species on Earth and most, if not all, of humanity. It occurs when the climate destabilizes to a level where the human species and/or other critical human-supportive species can no longer successfully exist. Extinction-level climate destabilization has happened several times previously during Earth's evolution.
Extinction-level climate destabilization will cost the nations of the world hundreds of trillions of dollars and billions of lives—maybe even the survival of the human species itself. There is a possibility that extinction-level climate destabilization may never correct or re-balance itself to some new equilibrium level. If the climate could correct or re-balance itself from this level of destabilization, it could take hundreds, thousands, or even hundreds of thousands of years.
To make matters worse, every new level of climate destabilization increases the frequency, severity, and scale of global warming consequences, making everything more unpredictable.
How long does carbon dioxide remain in our atmosphere?
Carbon dioxide is currently the most critical greenhouse gas related to global warming. For a long time, scientists believed that once in the atmosphere, carbon dioxide would remain for about 100 years. New research shows that this is not true. Seventy-five percent of that carbon will not disappear for centuries or thousands of years. The other 25% stays forever. We are creating a severe global warming crisis that will last far longer than we ever thought possible.
"The lifetime of fossil fuel CO2 in the atmosphere is a few centuries, plus 25 percent that lasts essentially forever. The next time you fill your tank, reflect upon this...[The climatic impacts of releasing fossil fuel CO2 to the atmosphere will last longer than Stonehenge… Longer than time capsules, longer than nuclear waste, far longer than the age of human civilization." —“Carbon is forever,” Mason Inman (8)
Today’s global warming and climate destabilization is a fatal threat to our future
Over its 4.5 billion-year history, our global climate has held many different, relatively stable states. For hundreds of thousands of years, our planet’s climate has moved within a relatively stable range of dynamic equilibrium, known as the cycle of Ice Ages. This cycle involves an alternating pattern of an Ice Age followed by a period of receding ice.
Humanity has flourished since the last Ice Age because of the warmer, agriculture-friendly temperatures and lack of glacial ice cover. As our global climate moves into a human-caused destabilization period (from its previously stable state of the Ice Age to non-Ice Age cyclical periods) and into a new state of dynamic equilibrium, many rapid changes occur. These changes are characterized, in part, by droughts, floods, wildfires, superstorms, and the changing of previously established seasonal weather patterns. These changes are now also occurring with increasing unpredictability and greater magnitude and frequency because of our continually escalating temperature.
We are already experiencing significant changes in rainfall and snowfall, with either too much or too little at one time. These transitional conditions will remain unstable or worsen until we have transitioned to a new, more stable climate temperature equilibrium and range.
The long-term “good” news is that sooner or later when conditions are right, a destabilized global climate will seek to establish equilibrium at some new level of temperature and other climate quality states. A stable climate is generally always better than an unstable climate in terms of our overall global climate. But any new equilibrium we eventually arrive at because of increasing global warming may not be friendly to us as humans.
Fueled by increasing population and human-caused global warming, we have already radically increased the destabilization of our climate and our average global temperature. Climate destabilization is already increasing reef collapse rates, desertification, deforestation, coastline loss, wildfires, droughts, superstorms, floods, productive soil degradation, growing season changes, water pollution, and species extinction.
It is possible (9) that we may soon tip the climate into a new, reasonably stable equilibrium, quite unlike the 12,000-year Ice Age cycles we have been experiencing for hundreds of thousands of years. The terrible news is that billions of humans could soon be suffering and dying because this climate destabilization will also destabilize our global financial, political, agricultural, and social systems.
Now that you understand global warming and climate destabilization, you can take a simple one-click action to help improve your understanding of what we are up against. Click here to learn why the language you use when discussing global warming is critical. (10)
A positive perspective to counter-balance all of this bad news
Eventually, we may be able to establish a new stable global average temperature and climate.
The long-term, big-picture silver lining is that a destabilized global climate will eventually seek to establish some new dynamic equilibrium. If we keep carbon ppm and global warming below certain levels, we will eventually experience a new, stable climate and temperature equilibrium. Stable is generally much better than unstable when it comes to maintaining our global temperature, climate, and civilization as we know it. Still, the new equilibrium might not be suitable for humans.
Despite the many challenging consequences of global warming and past fossil fuel reduction mistakes that we now face, we can still learn from their feedback and adapt and evolve to make life as good and happy as possible. No matter how severe the coming global warming consequences might become, if we wisely play the remaining cards we have dealt with, we can still achieve the best possible outcomes.
We can still significantly reduce global fossil fuel use, stabilize the planet, and save humanity's future by executing a comprehensive reduction and survival plan like the Job One for Humanity global warming action plan.
We can still maintain the perseverance needed to succeed in this monumental task by regularly reviewing the many benefits that will unfold as we work successfully on this together. (Click here to review those benefits.)
We can persevere through this time of emergency. We must remember that our greatest challenges are also the seeds of our greatest opportunities.
We are engaged in nothing less than the most critical and meaningful evolutionary opportunity, challenge, and adventure in human history! Our last chance is to slow the mass human extinction threat by getting close to these 2025 global fossil fuel reduction targets. Only reaching these targets will thoroughly remove the total extinction threat. In reaching these targets, we also significantly improve many of the world's other 12 major challenges.
Get started on Job One for Humanity's global warming reduction and survival plan today. Help save and salvage as much of humanity and our beautiful civilization as possible.
Please see this page for all the surprising benefits of climate change and global warming. It has been viewed over 2 million times and is the most-read page on our website.
Get Our New Free Climate Change Danger Alerts and Brief Climate Updates Here!
Key Recommended Additional Reading
1. Today's 10 most important climate change and global warming facts.
2. What are the 10 most dangerous things most people do not understand about the climate change emergency?
3. Click here if you are a victim of climate change damage or loss and want to get financial and other restitution for the damages you have suffered.
4. If you want to explore the deepest individual and societal causes of our climate change emergency and many of our biggest global crises, click here.
5. For many visitors to our uncensored climate change think tank's website, their biggest question after reading our climate change consequences and timetable forecasts is, "Why are your climate change forecasts so much worse than almost everything I hear in the media from my government, the educational environmental and climate change organizations, or the former world's leading authority on climate change, the United Nations Intergovernmental Panel on Climate Change (the IPCC)? Click here for the five critical reasons that will fully answer your question.
Summary
- Today's climate change emergency is not a natural disaster. It is a human-made disaster.
- Even a small increase in average global temperature will eventually create catastrophic changes.
- As global warming and climate destabilization continue, our local and national weather and global climate will become much more unpredictable. Storms, droughts, floods, seasonal disruptions, sea-level rise, and wildfires will become more severe and frequent and occur on a larger scale.
- As the global climate continues to destabilize, most people will not realize their lives are also destabilizing after it is too late.
- We may have already reached irreversible climate destabilization, which will last much longer than human life spans—for centuries or thousands of years.
- A continually destabilizing climate due to escalating global warming will disrupt everyday life, exceeding even our greatest world wars.
Sign Up To Learn More & Take Action!
Sign the Declare a Global Warming State of Emergency Petition
Learn how to prepare your family and business for the rapidly escalating consequences of global warming.
For an even deeper dive into the science of global warming and greenhouse gases
The heat-absorbing and emitting process of the greenhouse gases in our atmosphere is the fundamental cause of the greenhouse effect. If you are a visual learner, see two great illustrations of the greenhouse effect by going to:
Please donate any amount to help keep our 100% publicly funded nonprofit think tank free for everyone!
Please help us to keep providing uncensored climate change forecasts, facts, and solutions to the public.
With every donation of any amount, you will receive amazing gifts! Click the donate image below to see what these gifts are.
End Notes:
- The transition to new manufacturing processes took place in the period from about 1760 to sometime between 1820 and 1840. From Wikipedia contributors, "Industrial Revolution," Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=Industrial_Revolution&oldid=755848241 (accessed December 20, 2016).
- The "Keeling Curve Monthly CO2 Widget." ProOxygen. Accessed January 17, 2017 from https://www.show.earth/kc-monthly-co2-widget
- Changes in the El Niño La Niño patterns can periodically affect annual carbon ppm levels.
- Stephen Stoft. "Evidence that CO2 is the Cause of Global Warming." zFacts.com, accessed January 9, 2017, http://zfacts.com/p/226.html
- The slight downward trend in temperature from about 1945 until about 1975 is due to the increase in Sulfate Aerosols (SO4), which are produced mainly by burning sulfur-containing coal. These aerosols cool the earth, and their increase during these years essentially canceled the rise in CO2 during the same period.
- Shannon Hall, "NASA: Earth's poles are tipping thanks to climate change." April 8, 2016. PBS.org. http://www.pbs.org/newshour/rundown/nasa-earths-poles-are-tipping-thanks-to-climate-change/
- "Milankovitch Cycles." OSS Foundation, accessed January 20, 2017. http://ossfoundation.us/projects/environment/global-warming/milankovitch-cycles
- Mason Inman. "Carbon is forever." Nature.com. November 20, 2008. http://www.nature.com/climate/2008/0812/full/climate.2008.122.html
- Jeremy D. Shakun, Peter U. Clark, Feng He, Nathaniel A. Lifton, Zhengyu Liu, & Bette L. Otto-Bliesner. "Regional and global forcing of glacier retreat during the last deglaciation." Nature Communications, 5, no. 8059 (2015). DOI: 10.1038/ncomms9059
- Lawrence Wollersheim. "Pledge to Stop Saying 'Climate Change.'" JobOneforHumanity.org. Accessed December 20, 2016. http://www.joboneforhumanity.org/stop_saying_climate_change_pledge
If you want to understand the climate science and analysis procedures we used to present the above information, click here for a technical explanation of our climate research process.
This page is dedicated to my millennial stepson, James Torrey, on his 29th birthday! His generation and generations X and Y will hopefully solve this global challenge.